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Self-Attention-based Uplink Radio Resource
Prediction in 5G Dual Connectivity

Jewon Jung, Sugi Lee, Jaemin Shin and Yusung Kim

Abstract—Mobile communication technology is evolving
rapidly and becoming increasingly ubiquitous, thereby increasing
the demand for uplink data-intensive applications (e.g., personal
broadcasting and live augmented/virtual reality videos). Recently,
to facilitate a cost-effective and smooth transition from 4G to
5G networks, most carriers leverage existing 4G infrastructures
using a dual connectivity (DC) feature. DC increases uplink
throughput and mobility robustness; however, it also causes
unprecedented dynamic fluctuations in radio channels due to
the coverage discrepancy between 4G and 5G networks. Thus,
in this paper, we propose a self-attention-based deep learning
model to predict uplink radio resources in 5G DC. We trained
the proposed model on commercial 5G DC traffic data from
three major carriers in South Korea and obtained an average
prediction accuracy of 95.08% under various mobility and cell-
load conditions. The proposed model explains the rationale for
the obtained predictions by highlighting the parts of the input
time-series data that are important to realize accurate prediction.
We also demonstrate the usability of the proposed model using a
network emulator based on real-world 5G trace data. Extensive
evaluations demonstrate that the existing congestion control
algorithms can achieve excellent performance when used with
the proposed model.

Index Terms—5G Uplink Prediction, Dual Connectivity, Deep
Learning, Transformer

I. INTRODUCTION

THE emergence of 5G New Radio (NR) technology has
enabled the development of various multimedia and IoT

services that leverage its high bandwidth, ultra-low latency,
and massive connectivity. In contrast to 4G, 5G multimedia
services, such as high-resolution live streaming (e.g. up to
16K) and virtual/augmented reality, require huge resources
for uplink transmission [1]–[4]. 5G will also enable new
capabilities in vehicle-to-everything applications where vehi-
cles equipped with cameras and sensors generate increasing
amounts of multi-modal data to improve services such as
autonomous driving, advanced driver assistance system, and
infotainment [5], [6]. Uplink performance has therefore be-
come a crucial factor in 5G, especially given the impact that
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any transmission delays could have on human life. However,
in 5G networks, a user equipment (UE) or an IoT device
freely moves within or between cells, and a base station
(BS) must allocate an uplink radio resource to the UE (or
an IoT device) dynamically according to their radio chan-
nel conditions. Unpredictable channel fluctuations degrade
throughput significantly and increase end-to-end latency, and
such frequent fluctuations severely reduce the performance of
mobile applications.

To address this problem, several studies [7]–[12] have in-
vestigated forecasting uplink radio resources using rule-based
or machine learning (ML) methods. The available bandwidth
can be calculated according to the predicted radio resources
by applying bandwidth prediction for their congestion control
algorithms or application-level rate controls. However, the
prediction models were specifically designed for traditional
4G networks. Thus, additional considerations are required to
design a prediction model for the unique characteristics of 5G
network systems.

5G provides high bandwidth and low latency due to its
physical-layer innovations (e.g., massive multiple-input and
multiple-output and advanced channel coding). However, for
a smooth migration to 5G, most carriers employ the non-
standalone (NSA) mode to reuse the existing 4G infrastructure.
In the NSA mode, a UE can be connected to both 5G and
4G radio cells simultaneously. Although this dual connectivity
(DC) increases the aggregate throughput and mobility robust-
ness, the UE will experience frequent fluctuations in radio
channels due to the coverage gap between these two different
technology cells.

Thus, in this study, we measured large amounts of 5G DC
traffic from three major carriers in South Korea. For approxi-
mately 6,000 minutes, various scenario data were collected,
e.g., different mobility cases (highway driving, downtown
driving, downtown walking, and stationary cases), several time
zones, and different cell loads. By conducting in-depth data
analysis, we found that uplink throughput (i.e., the sum of
4G and 5G throughput) fluctuates more frequently than when
using only conventional 4G networks, which is consistent
with previous measurement results [13], [14]). These frequent
fluctuations occur in both moving and stationary scenarios due
to the poor channel conditions of 5G radio.

In this paper, we propose the learning-based Self-attention-
based Uplink Radio resource Estimation (SURE) model to
predict uplink radio resources in 5G DC. The proposed SURE
model is designed with a lightweight Transformer [15] archi-
tecture. The Transformer introduces a self-attention mecha-
nism to efficiently process sequential input data, e.g., natural
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language. The attention mechanism is effective at differentially
weighing the importance of each part of the input sequence.
We demonstrate that this process helps SURE understand the
dynamics of 5G DC channels affected by various situations.
The proposed model uses channel information that can be
collected by a UE without modification of commercial 5G
modems. With a given sequence of channel information, the
proposed SURE model predicts radio resources to be allocated
within a short period (e.g., 100 ms) for both 4G and 5G
technologies.

Our primary contributions are summarized as follows.
• We thoroughly examined the input features, the input

sequence length, and the model structures to efficiently
learn the 5G DC dynamics. We found that training to
predict 4G and 5G radio resources together using a single
shared model can achieve higher accuracy than training
each process separately.

• The proposed SURE model can learn which parts of
the time-series input data have major impacts on future
predictions. This attention mechanism improves the rep-
resentation learning of input data and provides an expla-
nation of how accurate predictions could be determined
under various conditions.

• In a real trace-driven network emulator [16], we evaluated
the usability of the proposed SURE model by integrat-
ing it into existing congestion control algorithms, e.g.,
CUBIC [17], BBR [18], and Indigo (a recurrent neural
network-based approach) [19]. By simply providing an
upper bound of the available bandwidth, all of these
algorithms exhibit better throughput while maintaining a
low queuing delay.

II. BACKGROUND AND MOTIVATION

A. Uplink Resource Allocation in Cellular Networks

In cellular networking systems, a BS monitors the states
of randomly moving a UE in each cell and conducts uplink
channel scheduling by assigning the UE resource blocks (RB)
dynamically according to the uplink traffic load of each cell.
An RB is a minimum unit of radio resource allocation, and
a BS initiates the uplink RB allocation when receiving a
scheduling request message generated by a UE that has data to
transfer [20]. In addition, the BS adopts the proper modulation
coding scheme (MCS) in consideration of the current channel
conditions and determines the transport block size (TBS) based
on the number of allocated RBs and MCS, i.e., the amount of
data that can be transferred during a single transmission time
interval (TTI) 1. This mechanism effectively helps a BS to
assign optimal radio resources to a UE with high mobility but
also causes it to experience fluctuating throughput and latency,
thereby resulting in severe performance degradation in mobile
applications.

B. Deployment of 5G Networking System

The 3rd Generation Partnership Project (3GPP) specifies
various options for efficient 5G deployment [2]. The stan-

1In 4G, the TTI is fixed to 1ms, while scalable TTI (from 62.5µs to 1ms)
is used in 5G networks.

Fig. 1. Dual Connectivity overview for NSA/SA architecture: The LTE-NR
DC utilizes both eNodeB and gNodeB for data transmission. In NR-NR DC
of the SA architecture, a UE connects to two gNodeBs for data transmission.

dalone (SA) architecture (option 2), operating on an infras-
tructure dedicated to 5G, fully exploits the advantages of
5G networks. However, it is challenging and time-consuming
to completely replace existing 4G infrastructures with 5G
infrastructures. To save time and reduce costs, most carriers
have switched to an NSA 5G architecture (option 3), which
provides 5G networking on existing 4G infrastructures; thus,
NSA 5G architectures have been widely deployed worldwide.
Therefore, in this study, we primarily focused on predicting
uplink radio resources in NSA 5G networks, although we
expect that the proposed SURE model can work effectively
in both SA and NSA 5G networks.

C. Dual Connectivity in 5G Networks

DC is an important feature of 5G networks that effectively
improves both throughput and mobility robustness. Fig. 1
shows two types of DC in 5G networks, i.e., LTE-NR DC
and NR-NR DC [14]. The LTE-NR DC supported in NSA 5G
enables a UE to perform parallel data transmission through
4G and 5G channels based on simultaneous connections with a
4G BS (eNodeB) and a 5G BS (gNodeB). In the LTE-NR DC,
an eNodeB with greater coverage is a master node (MN) that
manages the control plane, and a gNodeB, as a secondary node
(SN), is connected to a UE via an MN. The SA 5G architecture
provides NR-NR DC, which utilizes mm-wave and mid/sub-6
GHz channels using two gNodeBs. In the NR-NR DC, both
gNodeBs manage the control plane; however, a single gNodeB
with mid/sub-6 GHz frequencies functions as an MN based on
its greater coverage than the SN. These mechanisms help a UE
boost throughput and experience seamless networking services
because an MN effectively covers the high-performance but
unstable data plane of an SN. However, new types of han-
dovers caused by the different coverages between an MN and
an SN cause unprecedented fluctuations of the radio resources
to be assigned to a UE, which can seriously degrade mobile
application performance. Fig. 2 shows three types of handovers
in 5G DC when a UE moves between SNs that are close to
each other (Fig. 2a) or distant from each other (Fig. 2b) within
the coverage of an MN and moves between MNs (Fig. 2c).

D. Uplink Prediction Challenges in 5G Networks

Data-intensive mobile applications are becoming increas-
ingly ubiquitous; thus, the demand for efficient uplink trans-
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(a) SN handover (b) UE lost/find SN (c) MN handover

Fig. 2. Various handover scenarios in 5G: (a) A UE moves to the adjacent SN causing a handover between SNs while maintaining DC. (b) As the UE gets
out of the coverage of the connected SN, DC is deactivated. When the UE enters the coverage of another SN, DC is reactivated. (c) If the UE approaches
the edge of the connected MN, handover between MNs occurs with temporary deactivation of DC.

(a) Highway driving (b) Downtown walking (c) Office stationary (A case of 5G bad chan-
nel)

Fig. 3. 5G TBS fluctuation for each scenario: (a) In the highway driving scenario, 5G TBS fluctuates drastically due to the rapidly changing channel
quality, frequent cell switching, and handover caused by the small cell coverage of a gNodeB, whereas 4G TBS fluctuates much less frequently. (b) In the
downtown walking scenario, 5G TBS still fluctuates due to the high cell load and small cell range. (c) An unstable 5G signal makes a UE disconnect from
gNodeB even in the office stationary scenario.

mission is also increasing in 5G networks. However, such
applications frequently have degraded performance because a
5G UE experiences more frequent handovers than 4G networks
due to the small communication range (e.g., micro/pico/femto-
cells) of the high-band signals [21] and DC operations [14].
To demonstrate this, we measured uplink resource fluctuations
caused by handovers in real-world NSA 5G networks. In
Fig. 3, 4G, and 5G TBSs are shown for three scenarios:
(1) highway driving, (2) downtown walking, and (3) office
stationary. The TBSs in the office stationary scenario are
lower than those in the other scenarios due to poor channel
conditions. We observe that the 5G TBS fluctuates severely
due to the rapidly changing channel quality and frequent
handover in the highway driving and downtown walking
scenarios, whereas the 4G TBS oscillates less. In particular,
we note that the 5G TBS fluctuates even in the office stationary
scenario, and we can reasonably assume that this is because
the UE was located in the coverage boundary of a gNodeB,
and the signal from the gNodeB suffered attenuation or path
loss frequently. These analyses and observations well explain
the difficulty in forecasting uplink radio resources in 5G
networks accurately. Several studies [9]–[12] have proposed
uplink prediction models for cellular networks to improve
the performance of uplink-centric mobile applications. These
models predict the near-future available bandwidth based on
the history of various information related to uplink resource
allocation. Specifically, in recent studies about uplink resource
prediction [10], [12], it was shown that the length (or time win-
dow) of history strongly affects prediction accuracy, and PER-
CEIVE [10], which forecasts uplink resources based on long
short-term memory (LSTM), successfully improved accuracy

using an additional LSTM model that selects an appropriate
time window dynamically in response to channel condition
changes. However, in our systematic analysis (Section IV-A),
the time window selection, which requires a single one-time
window value from limited options (100 ms, 300 ms, and
1000 ms), was insufficient to maximize prediction accuracy
under extremely fluctuating 5G channel conditions. In addi-
tion, most existing prediction models, including PERCEIVE,
are specifically designed for 4G networks without considering
the aforementioned challenges associated with 5G networks.
Thus, in this study, we propose a Transformer-based prediction
model that performs precise uplink prediction in 5G networks
by automatically focusing on the important parts of the input
time-series data.

E. Transformer

The Transformer [15] model, which is a contemporary deep
learning model, processes sequential data (e.g., language or
vision data) based on a self-attention mechanism that provides
context to each part of an input sequence by estimating the in-
dependent weights of those parts. Here, the context represents
how closely one part of the input sequences is relevant to other
parts, and the Transformer model effectively predicts missing
or succeeding parts of the input sequences based on the
available context information. The Transformer model utilizes
an encoder and decoder that each perform self-attention. The
encoder comprises multiple encoding layers, each of which
processes the input sequences and passes the results to the
following layer. The decoder with multiple decoding layers
generates output sequences from the encoding results based
on comprehensive context information. Thus, compared to
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recurrent neural networks (RNN) traditionally used to process
sequential input data, the Transformer model works efficiently
regardless of the length of the input sequences and prevents the
vanishing gradient problem [15], which significantly reduces
the accuracy of RNNs.

III. DESIGN OF SURE

In this section, we describe the architecture and implemen-
tation of the proposed SURE model, which learns an uplink
scheduling pattern and performs millisecond-level uplink pre-
diction in 5G DC.

A. System Overview

Fig. 4 shows an overview of the SURE-based uplink radio
resource prediction system. In this system, the UE collects
uplink scheduling information every 20 ms and creates a
feature group based on this information. We denote this feature
group by Ft = {f t

1, f
t
2, ..., f

t
k} where fk and t refer to the se-

lected input feature and specific time point t, respectively. The
Transformer-based prediction model utilized in the proposed
SURE model processes an input sequence with 50 feature
groups gathered over the past 1000 ms, which can be denoted
by the input sequence St = {Ft−49ϕ, Ft−48ϕ, ..., Ft−ϕ, Ft}
where ϕ refers to the time period of 20 ms. With St consisting
of 50 feature groups, our prediction model imposes different
weights on every feature group by computing self-attention
distribution and passes them across normalization and feed-
forward layers, just like the original encoder of the Trans-
former model. After predicting the 4G and 5G TBSs at the
same time, we inform the UE of 4G or 5G TBSs to be allocated
by the BSs (eNodeB or gNodeB) for the next 100 ms. Finally,
the UE estimates the available bandwidth based on TBSs
and applies the predictive bandwidth to various congestion
control schemes to improve application performance against
severely fluctuating uplink radio resources. Fig. 7a shows the
performance of the proposed SURE model with different input
sequence lengths. As can be seen, SURE achieves the lowest
root mean square error (RMSE) when the length of the input
sequence is equal to or greater than 1000 ms because the
Transformer model can focus on important parts of long input
sequences dynamically based on the self-attention mechanism.

B. Data Collection

To maximize the accuracy of the proposed SURE model,
we collected a large amount of training data and extensively
measured 5G DC traffic over the commercial NSA 5G net-
works of three major Korean carriers (SKT, KT, and LG U+).
In these measurements, we used a rooted phone (Samsung
Galaxy S20) and XCAL-Solo [22], which is a COTS moni-
toring tool, to acquire a cellular signal and uplink scheduling
information directly from a 5G modem chipset. We executed
iPerf [23] to generate massive UDP traffic to fully utilize
the available uplink bandwidth allocated by BSs (eNodeB or
gNodeB). As shown in TABLE I, we collected measurement
data in various locations, i.e., five highways, four downtown
areas, and three stationary locations (residences, offices, and

Fig. 4. SURE Overview: 50 feature groups consisting of the past 1000 ms
of data gathered from the cellular monitoring tool form the input sequence
for the Transformer-based prediction model that estimates the average 4G/5G
TBSs for the next 100 ms.

TABLE I
DATA COLLECTION STATISTICS IN MINUTES: EXTENSIVE 5G DC

TRAFFIC TRACES COLLECTED IN VARIOUS TIME ZONES AND LOCATIONS.

Highway Downtown Stationary Total (min)
Morning 455 222 68 745

Afternoon 1124 372 713 2209
Evening 888 593 1296 2784
Dawn 29 28 461 518

Total (min) 2496 1215 2545 6256

department stores). Here, equal amounts of data were collected
from each of the three carriers. The entire dataset corresponds
to a duration of over 100 hours and covers different time peri-
ods: morning (7:00–12:00), afternoon (12:00–18:00), evening
(18:00–00:00), and dawn (00:00–7:00). Our test dataset and
brief learning code are available publicly at GitHub reposi-
tory [53].

C. Input Feature Selection

We select input features by performing an in-depth analysis
of the uplink scheduling and DC operations in 5G networks.
Here the TBS, RB, and reference signals received power
(RSRP) are selected because they tend to have a close relation
with radio resource allocation in cellular networks [10]–[12],
[24]. In addition, we discover an unrevealed correlation be-
tween the TBS to be allocated to the UE and the transmission
power (Tx-Power) required when the UE transfers uplink data
to a BS. This may be because the Tx-Power is selected by con-
sidering the channel quality between a BS and a UE; however,
Tx-Power also impacts the TBS for the following reasons. As
in the literature [25], for 5G DC, a UE is assigned independent
Tx-Powers by two BSs. However, the UE cannot use both
BSs simultaneously when each Tx-Power or the sum of the
Tx-Powers exceeds the output power capability of the UE.
Several power-sharing schemes have been proposed previously
to fully exploit 5G DC on power-constrained UEs [26], [27],
and we find that Tx-Power is a key element in these schemes.
Thus, we select 4G/5G Tx-Powers as our final learning feature.
Fig. 5 shows the nonlinear correlation coefficients between the
learning features and the 4G and 5G TBSs. The coefficients
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Fig. 5. Nonlinear correlation coefficient of each feature with 4G/5G TBS:
4G features tend to have a relationship with both 4G TBS and 5G TBS (and
vice versa).

Fig. 6. Transformer Model Structure in SURE: A normalized input
sequence is an input to the encoder through an embedding and positional
encoding layer. Rather than a decoder layer, here, a linear output layer is
connected directly to the encoder.

are calculated in reference to the literature [28], and all
features exhibit a high correlation with both TBSs. Thus, the
proposed SURE model achieves 10% higher accuracy than
the combination of two Transformer models that learn either
the 4G TBS or 5G TBS separately, as shown in Fig 7b. We
also evaluated the performance of the proposed SURE model
with different feature sets, and it achieved the highest accuracy
when using all selected features (RSRP, RB, TBS, and Tx-
Power), as shown in Fig.. 7c. Our novel feature, i.e., Tx-
Power, significantly affects the accuracy, whereas an additional
feature, i.e., MCS, reduces the accuracy of the proposed
model.

D. Model Architecture

Decoder-free Transformer Model. Fig. 6 illustrates the
structure of our Transformer model. Here, we replaced the
decoder with a linear output layer to obtain the output results.
Since our goal is to predict 4G and 5G TBSs at the same
time, we set the size of the output dimension to 2. This
decoder-free Transformer model has the following advantages
compared to the original Transformer. (1) According to the
literature [29], our proposed Transformer model is less likely
to suffer overfitting, and it effectively solves regression prob-
lems using context information from an encoder directly when
deriving the final results. (2) Our Transformer model requires
fewer parameters, which reduces the computational resources
required for training and inference by less than 1%. (3) Its

TABLE II
TRAINING HYPERPARAMETER OF SURE

Batch size 128
Dropout rate 0.03
Model dimension 128
Feed-forward dimension 256
Number of heads 8
Number of encoder block 1
Epoch 150
Initial learning rate 0.00025
Optimizer RAdam optimizer
Normalization layer LN
Activation function GELU

lightweight design ensures that the proposed SURE model
can be implemented easily on a UE. As shown in Fig. 7d,
our model achieves approximately 30% lower RMSE than the
Transformer model with the decoder.

Learning Process. In the proposed model, training and test
datasets are normalized using the standardization method for
each feature. A total of 8 selected features (TBS, RB, RSRP,
and Tx-Power of 4G and 5G) form a feature group Ft for
every time point and an input sequence St consisting of 50 Fts
gathered over the past 1000 ms. After that, St is linearly pro-
jected through a vector embedding module to be transformed
into a group of single vectors that can be processed by the
encoder. Specifically, every feature group Ft consisting of 8
features (k=8) passes a single linear layer to be compressed to
a single vector. These vectors are used as queries, keys, and
values at the self-attention layer of the Transformer model.
We also utilize positional encoding [15] to assign a sequential
meaning of the time-series data to the input vectors. And then,
the encoder with eight self-attention heads processes the input
vectors and the final sequence of continuous representation
vectors Zt = {zt−49ϕ, zt−48ϕ, ..., zt−ϕ, zt} is generated and
concatenated into a single vector z̄t which is used as an input
to the linear output layer. Finally, the output results of average
4G and 5G TBSs for the next 100 ms are estimated through
the linear output layer:

ŷ = Wz̄t + b (1)

where ŷ refers to the prediction result and W , b are learnable
weight and bias value of the linear layer (note that we set the
output dimension to 2, the 4G and 5G TBS predictions are
estimated). We also applied the RMSE loss function:

LRMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (2)

where N and yi refer to the number of samples and ground
truth, respectively. We empirically selected hyperparameters
through several experiments. Our model performed best when
composed of one encoder block with an internal embedding
dimension size of 128. A set of hyperparameters that showed
the best performance during the model training is described
in TABLE II.
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(a) Input Length (b) 4G/5G separated Model

(c) Input Feature (d) w/ or w/o Decoder

Fig. 7. Ablation Study of SURE: (a) Comparison of prediction accuracy with
different input sequence lengths. (b) The proposed SURE model outperforms
the separated prediction model due to the strong relation between 4G and
5G features. (c) Prediction accuracy which achieved by SURE with different
feature combinations. (d) For our regression task, a model without a decoder
layer exhibits optimal performance.

E. Implementation

Model Complexity. Developing an efficient model for a UE
with limited resources, e.g., RAM and CPU, is challenging,
and certain deep learning models (e.g., Transformer models)
require extensive resources, which may exceed a UE’s capabil-
ities. The proposed model is designed as a lightweight version
of the Transformer model. Here, the number of parameters
in our model is 146,434, which is less than 1% of the
number of parameters in the original Transformer model [15].
In addition, we reduce the memory size of the model by
approximately 30% using quantization without compromising
prediction accuracy (accuracy is reduced by only 0.035%).
We also implemented the proposed SURE model on several
COTS 5G smartphones (Galaxy S20, Galaxy A90 5G, and LG
Q92 5G) and evaluated its practicality. We observed that the
inference of the proposed SURE model is completed within
12.23–16.88 ms using minimal resources (5.25–8.657% of the
CPU resources and 1.223–2.957% of the RAM resources).

Integration with congestion control protocols. Congestion
control is a core component that efficiently utilizes network re-
sources while avoiding congestive collapse. Many congestion
control algorithms have been studied, and some have been
implemented in operating system kernels. Each algorithm is
designed to realize a specific purpose, e.g., high through-
put [17], low tail latency [18], and seamless live stream-
ing [30]. Thus, we attempt to generalize the proposed model
such that it can be incorporated into various congestion control
algorithms rather than being tied to a specific algorithm. Here,
we introduce a simple concept to integrate the proposed SURE
model with several congestion control algorithms. We limit
the number of in-flight packets without affecting the original
congestion control algorithms. For this purpose, we calculate
the average congestion window (or bit rate) for the next 100
ms based on 4G/5G TBSs predicted by the proposed SURE

model every 100 ms and determine whether to send a packet
based on two strategies, i.e., the min-strategy and avg-strategy.
The min-strategy limits the generation of packets when the
number of in-flight packets is greater than the smaller value
of the original congestion window (cwnd) and the predicted
average congestion window (cwndpred). In contrast, the avg-
strategy regulates the average number of in-flight packets never
exceeding cwndpred. Here, we utilize the min-strategy due to
its simplicity, even though its expected throughput is less than
that of the avg-strategy. Note that other smart strategies that
maximize network performance may be available; however, we
observed that the simple min-strategy achieves high throughput
and low tail latency in various environments (Section IV-B).

IV. EVALUATION

We evaluated the performance of the proposed SURE model
based on real-world DC traffic traces collected from NSA
5G networks. In this evaluation, we validated the prediction
accuracy and usability of the proposed SURE model based on
extensive trace-driven emulations.

A. Prediction Accuracy

Training and Test Datasets. We collected a large number
of datasets involving a total of approximately 20 million
samples. Based on the date and location of the data collected,
we split the collected datasets into training and test datasets at
a ratio of 80:20, where 20% of the training datasets were used
as validation sets in the learning process. In addition, 50% of
the test datasets comprised data samples collected at different
locations from the location where the training datasets were
collected, which we refer to as untrained-location test datasets.
Unless otherwise noted, we utilized the comprehensive test
datasets, including the untrained-location test datasets, in most
evaluations.

Baseline model. We implemented several uplink resource
prediction models for comparison, i.e., LinkForecast [12], Re-
bera [11], and Best Fixed LSTM (BF-LSTM). The LinkFore-
cast model trains a random forest model with input sequences
including TBS, RSRP, and reference signal received quality
(RSRQ) gathered over the previous 1000 ms. For Rebera, we
used the history-based prediction model, where the history
of TBSs is managed based on an exponentially weighted
moving average. The BF-LSTM model is implemented based
on PERCEIVE [10]. Here, we trained three LSTM models
processing the input time-series data with different lengths or
time windows of 100 ms, 300 ms, and 1000 ms, and BF-
LSTM select the most accurate value among the TBSs inferred
by the three LSTM models (LSTM100ms, LSTM300ms, and
LSTM1000ms) every 100 ms. We also modified all models to
predict both 4G and 5G TBSs because they were designed
specifically for 4G networks only, and we set other details
(selected features, hyperparameters, and model structures) to
be the same as in the referenced studies.

Accuracy in various scenarios. We evaluated the predic-
tion accuracy of the proposed SURE model compared to the
baseline models. Here, we considered four unique scenarios
classified based on a combination of locations and mobility
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(a) Highway driving (b) Downtown driving (c) Downtown walking (d) Stationary

Fig. 8. Aggregated TBS MAPE comparison between SURE, BF-LSTM, LinkForecast [12], and Rebera [11] for each scenario: The proposed SURE
model achieves the lowest prediction error for both the rush hour and daily hour periods in all scenarios, which indicates that the SURE model can handle a
high cell-load environment properly. The proposed SURE model outperforms other models in (a)–(c) mobility scenarios and (d) a stationary scenario, which
demonstrates that the proposed model can effectively handle cell switching and handover.

(a) MAPE of trained and un-
trained location

(b) MAPE of trained carrier(A)
and untrained carriers(B and C)

Fig. 9. Generalizability on test sets with different locations or carriers:
(a) shows that SURE can predict well on test datasets collected in different
locations that were not used for training. In (b), we first trained SURE only
on datasets for carrier A, and then evaluated SURE on the test sets for carriers
B and C.

states, i.e., highway driving, downtown driving/walking, and
stationary scenarios. Fig. 8 shows the mean absolute percent-
age error (MAPE) values between the measured and expected
throughput in all scenarios. The expected throughput was
estimated based on the sum of the 4G and 5G TBSs predicted
by the proposed SURE model or the baseline models. To
highlight the impact of cell load on uplink radio resource
prediction, we show the MAPE values of specific time periods
with high cell loads: rush hours (morning and evening) in
the highway/downtown scenarios and daily hours (morning,
afternoon, and evening) in the stationary scenario. The pro-
posed SURE model achieved the highest accuracy in high
mobility scenarios (highway driving and downtown driving),
and it demonstrated excellent performance in high cell-load
environments (rush hours and daily hours). We found that
the proposed SURE model achieved approximately 8.96%,
19.48%, and 15.06% lower MAPE values than the BF-LSTM,
LinkForecast, and Rebera models, respectively.

Generalization to different locations or carriers. We also
validated the generalizability of the proposed SURE model by
evaluating accuracy based on the trained and untrained test
datasets. Fig. 9a shows the prediction performance of SURE
for the trained-location and untrained-location test datasets.
As can be seen, the proposed SURE predicted the uplink
throughput at untrained locations precisely while maintaining
a low MAPE value of 5.32%. In addition, to further evaluate
generalizability, we trained the proposed SURE model using

Fig. 10. Average 4G/5G prediction RMSE: SURE achieves the lowest
prediction error for both 4G and 5G networks. The compared methods exhibit
larger errors in 5G prediction.

training datasets for a single carrier (carrier A) and measured
the MAPE when it predicted the uplink throughput based on
the test datasets corresponding to the trained carrier (carrier
A) or untrained carriers (carriers B and C). As shown in
Fig. 9b, the SURE model exhibits excellent generalizability by
achieving a MAPE value of 5.14%, even on the test datasets
for untrained carriers.

Detailed Analysis of SURE. To demonstrate the perfor-
mance of the proposed SURE model extensively, we examined
the performance for both 4G and 5G uplink prediction tasks.
As shown in Fig. 10, SURE achieves the highest accuracy
for both 4G and 5G uplink prediction because it effectively
considers 5G DC operations based on our novel features (4G
and 5G Tx-Powers). Here, we consider RMSE rather than
MAPE because it is difficult to calculate MAPE values for
5G throughput that frequently becomes zero (Section II-D).
In addition, Fig. 11 shows an example of severely fluctuating
throughput measured in the highway driving scenario and the
instantaneous predictive throughput of the SURE model and
baseline models against the fluctuation. As can be seen, the
proposed SURE model forecasts the ground truth throughput
much more accurately and promptly than the baseline models.

Effect of Self-Attention. The impact of each part of
the input time-series data on uplink prediction depends on
the characteristics of the dynamically changing cellular en-
vironment, e.g., cell-load dynamics, channel conditions, and
handovers. To validate this based on real-world traces, we
analyzed the prediction accuracy of the three LSTM models
used in the BF-LSTM method in various scenarios. Here, we
found that the best-performing model depends on the dynam-
icity of the uplink resources in each scenario. Fortunately,
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Fig. 11. Predicted uplink throughput traces of SURE and other prediction
models on 5G DC traffic: SURE effectively predicts uplink throughput even
in the presence of drastic fluctuations.

the Transformer-based SURE model obtains highly accurate
predictions against this dynamicity because the self-attention
mechanism in SURE properly focuses on different parts of
the input sequences in response to changes in the cellular
environment. Fig. 12 shows the accuracy of the three LSTM
models and SURE for the three scenarios. In addition, attention
maps are shown, which describe the average attention for each
part of the input sequences estimated while SURE performs
the prediction process. For the stationary scenario, where
LSTM100ms achieves the highest accuracy, SURE gives high
attention to only recent parts (0–100 ms) of the input time-
series data, and other parts (0–300 ms or 0–1000 ms) receive
more attention in the downtown walking and highway driving
scenarios, where LSTM300ms and LSTM1000ms work well,
respectively. From these results, we conclude that the high
performance of SURE is due to the self-attention mechanism.
In addition, long-term information and the latest information
are both important to realize precise uplink prediction against
severe fluctuations in the uplink radio resources. We also
expect that the attention-map-based explainability of SURE
will be helpful for future traffic analysis in both 5G and 6G
networks.

B. Usability
Emulation Setup. We performed extensive emulations to

evaluate the performance of the congestion control protocols
integrated with the proposed SURE model. Here, we used
the mahimahi trace-driven network emulator [16] and gen-
erated uplink traffic over the emulated 5G networks based
on real-world DC traces [31]. We integrated SURE into
well-known congestion control protocols (CUBIC [17] and
BBR [18] in QUIC [32]) and Indigo [19], which control
network congestion based on two ML models, i.e., LSTM
and DAgger [33]. To compare the SURE-based congestion
control protocols with various other protocols [34]–[37], we
also utilized Pantheon [19], which is a widely used congestion
control evaluation platform. In these emulations, the one-way
propagation delay and link-queue size were set to 30 ms and
1.5 × bandwidth-delay product (BDP), respectively (unless
otherwise noted).

Performance in various scenarios. Fig. 13 shows the
performance of various congestion control schemes for high-

way driving, downtown walking, and stationery scenarios. To
increase the reliability of this evaluation, for each scenario and
congestion control scheme, we repeated the emulation 10 times
with different 50-s traces and show the average throughput and
95th percentile one-way delay. We observed different degrees
of uplink channel fluctuations in each scenario. The uplink ra-
dio resources allocated to the UE fluctuate most severely in the
highway driving scenario, whereas it is the most consistent in
the residence-stationary scenario. In all scenarios, the SURE-
based protocols exhibit excellent throughput with low latency
compared to various congestion control protocols. We found
that SURE-QUBIC achieves approximately 49.74% lower tail
latency than QUBIC, and SURE-Indigo increases throughput
by up to 4.66% compared to Indigo. In particular, SURE-
BBR significantly improves the throughput and latency of
BBR by up to 10.2% and 52.8%, respectively. It is remarkable
that SURE significantly improves the performance of existing
congestion control schemes while preserving their original
objectives, including the high throughput of QUBIC and low
latency of Indigo.

Performance with various network configurations. We
evaluated the SURE-based congestion control protocols with
various one-way propagation delays and link-queue sizes. In
this evaluation, the one-way propagation delay varied from
10 to 100 ms, and the queue size varied from 0.5 x BDP
to 2 x BDP. Here, we only considered two scenarios, i.e.,
the highway driving and stationary scenarios. We repeated the
emulation 10 times with the same trace for each scenario to
clearly demonstrate the impact of one-way propagation delay
and link-queue size on congestion control 2. As shown in
Fig. 14, the SURE-based protocols improve the performance
of the original protocols in the stationary scenario. As the
one-way propagation delay or queue size increases, SURE
significantly reduces the tail latency of QUBIC and BBR by
22.67–69.13% and 25.7–59.23%, respectively, without com-
promising throughput. In addition, SURE-based QUBIC and
SURE-based BBR achieve 6.5% and 6.7% higher throughput
than CUBIC and BBR, respectively, when the one-way prop-
agation delay is 100 ms. As shown in Fig. 15, CUBIC and
BBR cannot work efficiently due to the severely fluctuating
uplink radio resources in the highway driving scenario, and the
tail latency increases drastically as the queue size increases.
However, the proposed SURE model effectively prevents the
tail latency of the original protocols from increasing. In addi-
tion, the throughput of BBR decreases greatly as the one-way
propagation delay grows; however, SURE effectively improves
the throughput of BBR by up to 34.5%. In all scenarios,
we found that Indigo efficiently controls network congestion
against uplink radio resource fluctuations; however, SURE-
based Indigo achieves approximately 3.7% higher throughput
than Indigo while preserving its excellent latency.

Performance on video streaming. We conducted the
evaluation for the effectiveness of SURE in adaptive video
streaming which is a real uplink data-intensive application. We
utilized tyStream [49], a performance test tool that emulates

2Despite using the same trace, we could obtain slightly different results
from each emulation due to the randomness of the traffic generation process
in the mahimahi emulator.
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(a) Highway driving (b) Downtown walking (c) Stationary

Fig. 12. MAPE comparison between LSTM model of PERCEIVE with three different ITW and SURE, and normalized attention weight map
estimated by SURE for each scenario: By utilizing the self-attention mechanism of the Transformer model, high attention weights are imposed on proper
parts of the input sequence.

(a) Highway driving (b) Downtown walking (c) Stationary

Fig. 13. Comparison of various congestion control schemes using Pantheon for each scenario: We calculated the average throughput and latency from
10 different traces for each scenario. Here, the delay was 30 ms, and the queue size was 1.5 × BDP.

(a) Latency w/ different delay (b) Throughput w/ different delay (c) Latency w/ different Queue (d) Throughput w/ different Queue

Fig. 14. Comparison of throughput and latency of original and SURE-based protocols in stationary scenario: We calculated the average throughput
and latency of 10 emulations using the same trace by varying the delay and queue size.

a video streaming environment between an ABR server and
a DASH [50] client over wireless networks emulated by
mahimahi. The DASH client was set up to fetch bitrate
selection decisions from the ABR server using fastMPC [51]
as its adaptive streaming algorithm. To conduct the evaluation,
we used an 8K video [52] encoded at bit rates of 17, 22, 25,
and 30 Mbps, which resolutions are 3840x2160, 5120x2880,
7680x4320, and 7680x4320, respectively. For the 5G network
emulation, our highway driving traces are used to represent
unstable and fluctuating mobile link conditions. We compared
the performance of adaptive streaming when using BBR versus
SURE-based BBR in the 5G emulation.

Fig.16a displays the throughput achieved by BBR and
SURE-based BBR during video uploading. SURE-based BBR
achieves 32.26% higher throughput than BBR because SURE
effectively improves the performance of BBR. With this ad-
vantage, higher bitrate video chunks (4-second video block)

could be selected more, as illustrated in Fig.16b. As a result,
the percentage of video chunks transmitted at the highest
bitrate (30 Mbps) was 70% when using SURE-based BBR,
but only 17.8% when using BBR only.

V. RELATED WORK

Cellular Network Prediction. Numerous studies have pro-
posed methods to predict the next network state in cellular
networks, e.g., PROTEUS [9] for 3G networks and Rebera [11]
and PERCEIVE [10] for 4G networks. QCut [38] demon-
strated that packet queuing delay can be reduced significantly
by estimating the throughput of the 4G network accurately.
PCC Vivace [34] considers 4G networks in its congestion
control algorithm. A previous study [7] attempted to improve
a video codec by collaborating with the transport layer using
deep imitation learning. While these schemes only utilize
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(a) Latency w/ different delay (b) Throughput w/ different delay (c) Latency w/ different Queue (d) Throughput w/ different Queue

Fig. 15. Comparison of throughput and latency of original and SURE-based protocols in highway driving scenario: We calculated the average
throughput and latency of 10 emulations using the same trace by varying the delay and queue size.

(a) Throughput Trace

(b) Selected Chunk Bitrates Ratio
Fig. 16. Video Streaming Comparison between BBR and SURE based
BBR: Both scheme used same ABR algorithm, fastMPC.

upper-layer information, e.g., throughput and latency, Link-
Forecast [12] demonstrated the possibility of predicting 4G
networks using physical channel information, e.g., RSRP and
RSRQ. In addition, PBE-CC [39] optimized TCP congestion
control for a 4G downlink channel by providing the physical-
layer information to the server. [45] predicted 4G channel
quality using LSTM and DNN (Deep Neural Network). Rein-
forcement learning (RL) has become increasingly promising,
and OWL [8] provides a congestion control algorithm based
on predicting network conditions, including cellular networks,

using an RL agent that utilizes upper-layer information. In a
previous study [24], RL was employed to predict networks
using physical channel information. However, the methods
proposed in these studies were not designed to consider the
specific characteristics of 5G networks. In [40] and [41], ML-
based prediction models were proposed to forecast cellular
radio resources in vehicular networks based on NSA 5G or 6G.
[47] used ML for predicting SINR of 5G, and HYPER [46]
used ARMA(AutoRegressive Moving Average) model to pre-
dict 5G intra-cell bandwidth. However, these studies did not
sufficiently consider severe uplink resource fluctuations caused
by DC operations in 5G networks. In contrast, the proposed
SURE model accurately predicts uplink radio resources in DC-
enabled 5G networks based on the lightweight Transformer
model, which effectively learns resource allocation patterns
with novel features that are closely related to 5G DC.

Cell Load Estimation. Previous studies have attempted
to evaluate the cell load, which is also an important aspect
of cellular network performance. For example, the piStream
method [42] measures the subcarrier-wise energy level to
evaluate the cell resource element occupancy and predict
the bandwidth that will be given. In addition, CLAW [43]
estimates the cellular downlink load using RSRQ, which can
be obtained easily by a UE. CASTLE [44] improved the
accuracy of estimating the cell load by considering inter-cell
interference using a nonlinear support vector machine model.
A2T-Boost [48] utilized the ML model for 5G cell selection
to minimize handovers and improve network performance in
vehicular networks.

VI. CONCLUSION

In this paper, we have proposed a self-attention-based
learning model to predict uplink radio resources in 5G DC.
The proposed SURE model realizes accurate predictions with
excellent explainability based on extensive measurements of
COTS NSA 5G traffic. In addition, we integrated our predic-
tion information into existing congestion control algorithms to
prove its usability. The trace-driven evaluation results demon-
strate that this integration can improve throughput significantly
while maintaining a sufficiently low queuing delay.

ACKNOWLEDGMENTS

This work was supported by Institute of Information com-
munications Technology Planning Evaluation (IITP) grant
funded by the Korea government(MSIT) (No.2020-0-00952,
Development of 5G Edge Security Technology for Ensuring

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Sungkyunkwan University. Downloaded on October 16,2023 at 06:12:23 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL 11

5G+ Service Stability and Availability)(No. 2022-0-01045,
Self-directed Multi-Modal Intelligence for solving unknown,
open domain problems)(No. 2019-0-00421, Artifcial Intelli-
gence Graduate School Program(Sungkyunkwan University)).

Furthermore, we would like to express our deep gratitude
to Innowireless Co., Ltd. for providing us with the 5G com-
mercial network measurement analysis tool.

REFERENCES

[1] IMT Traffic Estimates for the Years 2020 to 2030, Standard ITU-
RM.2370-0, 2015.

[2] A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu, X. Zhang, D.
Rybkin, Z. Yang, Z. M. Mao, and F. Qian, “A variegated look at 5G in the
wild: performance, power, and QoE implications,” in Proc. 2021 Annual
conference of the ACM Special Interest Group on Data communication on
the applications, technologies, architectures, and protocols for Computer
Communication, 2021, pp. 610–625.

[3] M. Uitto and A. Heikkinen, ”Evaluation of Live Video Streaming
Performance for Low Latency Use Cases in 5G,” 2021 Joint Euro-
pean Conference on Networks and Communications 6G Summit (Eu-
CNC/6G Summit), Porto, Portugal, 2021, pp. 431-436, doi: 10.1109/Eu-
CNC/6GSummit51104.2021.9482605.

[4] M. Ghoshal, I. Khan, Q. Xu, Z. J. Kong, Y. C. Hu, and D. Koutsonikolas,
“NextG-up: A Tool for Measuring Uplink Performance of 5G Networks,”
in Proceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services, in MobiSys ’22. New York, NY,
USA: Association for Computing Machinery, 2022, pp. 638–639. doi:
10.1145/3498361.3539694

[5] A. Aliyu et al., “Towards video streaming in IoT Environments: Vehicular
communication perspective,” Computer Communications, vol. 118, pp.
93–119, 2018, doi: https://doi.org/10.1016/j.comcom.2017.10.003.

[6] M. Boban, C. Jiao and M. Gharba, ”Measurement-based Evaluation of
Uplink Throughput Prediction,” 2022 IEEE 95th Vehicular Technology
Conference: (VTC2022-Spring), Helsinki, Finland, 2022, pp. 1-6, doi:
10.1109/VTC2022-Spring54318.2022.9860971.

[7] A. Zhou, H. Zhang, G. Su, L. Wu, R. Ma, Z. Meng, X. Zhang, X.
Xie, H. Ma, and X. Chen, “Learning to Coordinate Video Codec with
Transport Protocol for Mobile Video Telephony,” in Proc. ACM 25th
Annual International Conference on Mobile Computing and Networking
(MobiCom), 2019, pp. 1–16.

[8] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “Owl: Congestion
Control with Partially Invisible Networks via Reinforcement Learning,”
in Proc. IEEE Conference on Computer Communications, 2021, pp. 1–10.

[9] Q. Xu, S. Mehrotra, Z. Mao, and J. Li, “PROTEUS: Network Performance
Forecast for Real-Time, Interactive Mobile Applications,” in Proc. ACM
11th annual international conference on mobile systems, applications,
and services, 2013, pp. 347–360.

[10] J. Lee, S. Lee, J. Lee, S.D. Sathyanarayana, H. Lim, J. Lee, X. Zhu,
S. Ramakrishna, D. Grunwald, K. Lee, and S. Ha, “PERCEIVE: Deep
Learning-Based Cellular Uplink Prediction Using Real-Time Scheduling
Patterns,” in Proc. ACM 18th international conference on mobile systems,
applications, and services, 2020, pp. 377–390.

[11] E. Kurdoglu, Y. liu, Y. Wang, Y. Shi, C. Gu, and J. Lyu, “Real-Time
Bandwidth Prediction and Rate Adaptation for Video Calls over Cellular
Networks,” in Proc. ACM 7th International Conference on Multimedia
Systems, 2016, pp. 1–11.

[12] C. Yue, R. Jin, K. Suh, Y. Qin, B. Wang, and W. Wei., “LinkForecast:
Cellular Link Bandwidth Prediction in LTE Networks,” IEEE Trans.
Mobile Computing, vol. 17, no. 7, pp. 1582–1594, 2018.

[13] A. Narayanan, E. Ramadan, J. Carpenter, Q. Liu, F. Qian, and Z. L.
Zhang, “A First Look at Commercial 5G Performance on Smartphones,”
in Proc. ACM Web Conference 2020, New York, NY, USA: Association
for Computing Machinery, 2020, pp. 894–905.

[14] M. Agiwal, H. Kwon, S. Park and H. Jin, “A Survey on 4G-5G Dual
Connectivity: Road to 5G Implementation,” in IEEE Access, vol. 9, pp.
16193–16210, 2021.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” 30th Advances
in Neural Information Processing Systems, 2017.

[16] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mick-
ens, and H. Balakrishnan, “Mahimahi: Accurate Record-and-Replay for
HTTP,” in 2015 USENIX Annual Technical Conference (USENIX ATC
15), 2015, pp. 417–429.

[17] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5,
pp. 64–74, 2008.

[18] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” Communications of the
ACM, vol. 60, no. 2, pp. 58–66, 2017.

[19] F. Y. Yan et al., “Pantheon: the training ground for Internet congestion-
control research,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18), 2018, pp. 731–743.

[20] NR; Medium Access Control (MAC) protocol specification, 3GPP TS
38.321 v16.9.0, July. 2022

[21] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C.
K. Soong, and J. C. Zhang, “What will 5G be?,” IEEE J. Sel. Areas
Commun., vol. 32, no. 6, pp. 1065–1082, 2014.

[22] Innowireless XCAL Solo, [Online]. Available:
https://www.accuver.com/sub/products/view.php?idx=6

[23] ”iPerf - The ultimate speed test tool for TCP, UDP and SCTP,” June
2016

[24] M. Chen, R. Li, J. Crowcroft, J. Wu, Z. Zhao and H. Zhang, ”RAN
Information-Assisted TCP Congestion Control Using Deep Reinforce-
ment Learning With Reward Redistribution,” IEEE Trans. Communica-
tions, vol. 70, no. 1, pp. 215–230, 2022.

[25] NR; Radio Resource Control (RRC); Protocol specification, 3GPP TS
38.331 v16.9.0, July 2022.

[26] MediaTek, “5G NR Uplink Enhancements Better Cell
Coverage & User Experience,” 2018, [Online]. Avail-
able: https://newsletter.mediatek.com/hubfs/mwc/download/ul-
enhancements.pdf

[27] ZTE, ”5G Uplink Enhancement Technol-
ogy White Paper,” 2020, [Online]. Available:
https://www.zte.com.cn/content/dam/zte-site/res-www-zte-com-
cn/mediares/zte/files/newsolution/wireless/ran/white paper/5G Uplink
Enhancement Technology White Paper.pdf

[28] P. Laarne, M. A. Zaidan, and T. Nieminen, “Ennemi: Non-linear corre-
lation Detection with Mutual Information,” SoftwareX, vol. 14, 100686,
2021

[29] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff,
“A transformer-based Framework for Multivariate Time Series Represen-
tation Learning,” in Proc. 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 2021, pp. 2114–2124.

[30] S. Holmer, H. Lundin, G. Carlucci, L. De Cicco, and S. Mascolo,
“Google Congestion Control Algorithm for Real-Time Communication
on the World Wide Web,” IETF Draft, 2015.

[31] H. Zhang, A. Zhou, R. Ma, J. Lu, and H. Ma. “Arsenal: Understanding
Learning-based Wireless Video Transport via In-depth Evaluation,” IEEE
Trans. Vehicular Technology, vol. 70, no. 10, pp. 10832–10844, 2021.

[32] QUIC Working Group [Online]. Available: https://quicwg.org.
[33] S. Ross, G. J. Gordon, and J. A. Bagnell, “No-Regret Reductions

for Imitation Learning and Structured Prediction,” in Proc. 14th Intl.
Conference on Artificial Intelligence and Statistics, 2011.

[34] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, P. B. Godfrey, and
M. Schapira, “PCC Vivace: Online-Learning Congestion Control,” in 15th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), 2018, pp. 343–356.

[35] Shalunov, Sea, Greg Hazel, Janardhan Iyengar, and Mirja Kuehlewind,
”Low Extra Delay Background Transport (LEDBAT)”, RFC6817, 2012.

[36] A. Sivaraman, K. Winstein, P. Thaker, and H. Balakrishnan, ”An
Experimental Study of the Learnability of Congestion Control,” ACM
SIGCOMM Computer Communication Review 44(4), 2014, pp. 479–490.

[37] Zaki, Yasir, Thomas Po¨tsch, Jay Chen, Lakshminarayanan Subrama-
nian, and Carmelita Gorg, “Adaptive Congestion Control for Unpre-
dictable Cellular Networks,” in Proc. 2015 ACM Conference on Special
Interest Group on Data Communication, 2015, pp. 509–522.

[38] Y. Guo, F. Qian, Q. A. Chen, Z. M. Mao, and S. Sen, “Understanding
On-Device Bufferbloat for Cellular Upload,” in Proc. 2016 Internet
Measurement Conference, 2016, pp. 303–317.

[39] Y. Xie, F. Yi, and K. Jamieson, “PBE-CC: Congestion Control via
Endpoint-Centric, Physical-Layer Bandwidth Measurements,” in Proc.
2020 Annual conference of the ACM Special Interest Group on Data
communication on the applications, technologies, architectures, and pro-
tocols for Computer Communication, 2020, pp. 451–464.

[40] B. Sliwa, H. Schippers and C. Wietfeld, “Machine Learning-Enabled
Data Rate Prediction for 5G NSA Vehicle-to-Cloud Communications,” in
2021 IEEE 4th 5G World Forum (5GWF), 2021, pp. 299–304.

[41] B. Sliwa, R. Adam and C. Wietfeld, ”Client-based Intelligence for
Resource Efficient Vehicular Big Data Transfer in Future 6G Networks,”

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Sungkyunkwan University. Downloaded on October 16,2023 at 06:12:23 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL 12

in IEEE Trans. Vehicular Technology, vol. 70, no. 6, pp. 5332–5346,
2021.

[42] X. Xie, X. Zhang, S. Kumar, and L. E. Li, “piStream: Physical Layer
Informed Adaptive Video Streaming over LTE,” in Proc. 21st Annual
International Conference on Mobile Computing and Networking, 2015,
pp. 413–425.

[43] X. Xie, X. Zhang, and S. Zhu, “Accelerating Mobile Web Loading
using Cellular Link Information,” in Proc. 15th Annual International
Conference on Mobile Systems, Applications, and Services, 2017, pp.
427–439.

[44] J. Lee, J. Lee, Y. Im, D. Sathyanaryana, P. Rahimzadeh, X. Zhang, M.
Hollingsworth, C. Joe-Wong, D. Grunwald, and S. Ha, “CASTLE over
the air: Distributed Scheduling for Cellular Data Transmissions,” in Proc.
17th Annual International conference on Mobile Systems, Applications,
and Services, 2019, pp. 417–429.

[45] N. Diouf, M. Ndong, D. Diop, K. Talla, M. Sarr and A. C. Beye,
”Channel Quality Prediction in 5G LTE Small Cell Mobile Network Using
Deep Learning,” 2022 9th International Conference on Soft Computing
Machine Intelligence (ISCMI), Toronto, ON, Canada, 2022, pp. 15-20,
doi: 10.1109/ISCMI56532.2022.10068487.

[46] Y. Lin, Y. Gao and W. Dong, ”Bandwidth Prediction for 5G Cel-
lular Networks,” 2022 IEEE/ACM 30th International Symposium on
Quality of Service (IWQoS), Oslo, Norway, 2022, pp. 1-10, doi:
10.1109/IWQoS54832.2022.9812912.

[47] A. and M. E. and G. Yu. V. and S. S. Bobrikova Ekaterina and Platonova,
“Using Neural Networks for Channel Quality Prediction in Wireless
5G Networks,” Distributed Computer and Communication Networks:
Control, Computation, Communications, pp. 132–143, 2022.

[48] A. AlAblani and M. A. Arafah, ”A2T-Boost: An Adaptive Cell Selection
Approach for 5G/SDN-Based Vehicular Networks,” in IEEE Access, vol.
11, pp. 7085-7108, 2023, doi: 10.1109/ACCESS.2023.3237851.

[49] tystream, https://github.com/KevinRSX/tystream
[50] DASH.js, https://github.com/Dash-Industry-Forum/dash.js
[51] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A Control-Theoretic

Approach for Dynamic Adaptive Video Streaming over HTTP,” in
Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, in SIGCOMM ’15. New York, NY, USA:
Association for Computing Machinery, 2015, pp. 325–338. doi:
10.1145/2785956.2787486.

[52] B. Taraghi, H. Amirpour, and C. Timmerer, “Multi-Codec Ultra High
Definition 8K MPEG-DASH Dataset,” in Proceedings of the 13th
ACM Multimedia Systems Conference, in MMSys ’22. New York, NY,
USA: Association for Computing Machinery, 2022, pp. 216–220. doi:
10.1145/3524273.3532889.

[53] Test dataset and learning code, https://github.com/Doubb/Self-Attention-
based-5G-Uplink-Resource-Prediction

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Sungkyunkwan University. Downloaded on October 16,2023 at 06:12:23 UTC from IEEE Xplore.  Restrictions apply. 




